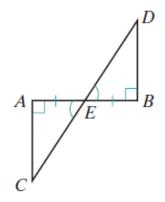

NYS COMMON CORE MATHEMATICS CURRICULUM	Lesson 21 U1
Name	GEOMETRY
Lesson 21: Congruent Triangles – SAS, SSS, ASA	LEARNING TARGETS I CAN <u>use</u> my knowledge of rigid motions to
<u>Warm Up</u>	prove two triangles are congruent.

Looking at the three problems below, match them with what criteria can be used to prove the two triangles are congruent: SSS, SAS or ASA

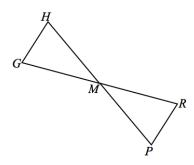


Given: \overline{AEB} and \overline{CED} intersect at E, E is the midpoint of $\overline{AEB}, \overline{AC} \perp \overline{AE}$, and $\overline{BD} \perp \overline{BE}$.

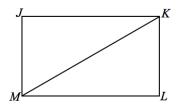
Prove: $\triangle AEC \cong \triangle BDE$

4.

Prove the triangles congruent by ASA.



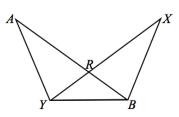
<u>Mini Lesson</u>


Example1:

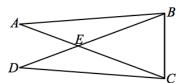
Based on the given information:

- 1. State the congruencies (SAS, SSS, or ASA) and the criteria used to determine them.
- 2. Prove the triangles congruent.
- A. Given: *M* is the midpoint of \overline{HP} , $m \angle H = m \angle P$.

B. Given: Rectangle JKLM with diagonal KM.



Work Time:


Exercise 1:

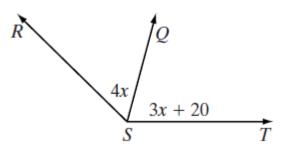
Based on the given information:

- A. State the congruencies (SAS, SSS, or ASA) and the criteria used to determine them.
- B. Prove the triangles congruent.
- A. Given: RY = RB, AR = XR.

B. Given: $m \angle A = m \angle D, AE = DE$

GEOMETRY

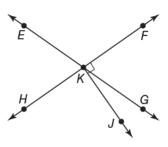
Name


Classwork/Homework

Lesson 21

Lesson 21: Congruent Triangles - SAS, SSS, ASA

Homework. A.


 \overrightarrow{SQ} bisects $\angle RST$, m $\angle RSQ = 4x$, and m $\angle QST = 3x + 20$. Find the measures of $\angle RSQ$ and $\angle QST$.

B. For Exercises 1–6, use the figure at the right. Name an angle or angle pair that satisfies each condition.

- 1. Name two acute vertical angles.
- 2. Name two obtuse vertical angles.
- 3. Name a linear pair.
- 4. Name two acute adjacent angles.
- **5.** Name an angle complementary to $\angle EKH$.
- **6.** Name an angle supplementary to $\angle FKG$.
- C. $\triangle LMN$ is an isosceles triangle, with LM = LN, LM = 3x 2, LN = 2x + 1, and MN = 5x 2.

Find the measure of each side.

